
Ninux Roma

The Routing Architecture

September, 2013 - Version 1

Authors

● ZioPRoTo - Saverio Proto
● Nino - Antonino Ciurleo
● Clauz - Claudio Pisa
● claudyus - Claudio Mignanti
● Hispanico - Marco Giuntini
● ordex - Antonio Quartulli
● G10h4ck - Gioacchino Mazzurco
● SCO - Pierluigi Checchi
● AGGIUNGITI QUI SE LAVORI AL DOCUMENTO

Scope of this document
From 2003 to 2011 we run the Ninux Wireless Community network in Roma, in small scale and
with private IPv4 addressing. Exchanging traffic with the Internet was done using NAT, and
exploiting the user home ADSL lines.
In the very beginning we had a layer 2 network, then RIP routing, and finally since 2005 we
started deploying the OLSR routing protocol.
Because we had a very simple network structure and running just a single routing protocol, up
to now we never needed a routing architecture.
In 2011 we started to deploy a new Ninux network in Rome. Dual stack IPv4 and IPv6, and with
BGP peerings to upstream providers.
Now the time has come to define a routing architecture.

 1

Table of Contents

Authors
Scope of this document
Table of Contents
Requirements
Glossary
Address Space

IPv4
IPv6
Conventions in Addressing

VPN address space:
GRE Tunnels Point to Point Links:

Network Topology
Mesh stub areas
Mesh transit areas

Routers specification
BGP routers

Export Policy
Import policy

OLSR routers
Routing operation inside the OLSR router
Avoid ghost traffic to gateways
Avoid ADSL Blackholes

ADSL routers
NAT - Network Address Translation
VPN: OOB, Monitoring and Connection to other cities
Migration from legacy Ninux to this routing architecture
Conclusion
Appendix: OLSR router configuration template
Appendix: OLSR Troubleshooting
Appendix: BGP router configuration template

 2

Requirements
The Ninux network of Rome is designed to be dual stack and to fully support native IPv6 and
IPv4. Moreover we try avoid tunneling in the core network to guarantee the delivery to any
Ninux site of the network a MTU of 1500 bytes, this way we never have fragmented IP packets
in the backbone.
All the destinations are fully routable within our autonomous system. We do not make use of
NAT inside the autonomous system.
Managing the IPv6 side is easier because we have to deal only with public addresses and
deliver the traffic towards external autonomous systems just to our upstream providers.
The IPv4 requirements are more complex because we have a mixed public and private address
space.
We use at any site private or public IPv4 addresses, and in terms of IP reachability we allow any
of the following exchanges:

● any private IPv4 to any private IPv4
● any public IPv4 to any public IPv4
● any private IPv4 to any public IPv4
● any public IPv4 to any private IPv4

For what concerns the outgoing traffic towards other ASs we have as a requirement to exploit
our upstream providers where we have BGP peerings, and also the bandwidth shared by Ninux
members, who provide access to their home Internet connections.

 3

Glossary
● Ninux Node: a Ninux Node is a set of devices on a roof managed by a Ninux member.
● Ninux Super Node: a Super Node is a Ninux Node that provides transit (i.e. is not a leaf

of the topology graph)
● Public Ninux IPv4: It is a public IPv4 assigned to the Ninux AS.
● Backbone: In this document we refer to backbone as the sets of links between Ninux

Super Nodes. These links are usually Point to Point (PtP) or Point to Multi Point (PtMP),
with high bandwidth capacity and directional antennas.

● In the Version 0 of the document you might find the Glossary is not complete

Address Space
At the moment, Ninux has been given the autonomous system number 197835, as stated in
https://stat.ripe.net/AS197835.
To better exploit the features of this architecture at least a /48 IPv6 network and a /24 IPv4
public network are needed. However the network could be deployed also with fewer resources.
For IPv4 any private IP address defined in the RFC 1918 can be used. However if you plan to
build a Ninux network in your city and you want to be able in the future to connect via VPN to
our services, we suggest to write to the Ninux mailing list to define a subnetting pattern for your
city that avoids collisions with the address space in the rest of the country.

IPv4
In Ninux Roma we currently use a /24 public network and various private networks from RFC
1918, however the architecture presented in this document is suitable for any address space.
The radio interfaces of the backbone have an IPv4 address in the 172.16.0.0/16 private space.
The third byte of this IP address is chosen to be close to the postal code of the geographic
address of the Ninux node.
So we define this address space: 172.16<.ZIPCODE>.x. Where x is allocated sequentially by
checking on our database which is the last IP address already allocated.
The LAN interfaces use the 10.0.0.0/8 address space. Again usually the Ninux Node obtains a
/24 trying to follow this pattern: 10.<ZIPCODE>.x.0/24. The rules to follow this pattern are the
same for the backbone interfaces.
We have some legacy Ninux nodes that do not follow this scheme, and may use also
192.168.0.0/16 addresses. This is not a problem unless there is a IP address collision.

 4

https://stat.ripe.net/AS197835

To compute the <ZIPCODE> value, we start from the Italian zip code postal address, that is a
number of 5 digits, and we apply the following formula:
if zipcode is XXYYY
then compute (YYY mod 255 + XX) mod 255
The Ninux Public IP addresses are not auto managed with an algorithm as it is for the private
address space. If a Ninux member needs a public IPv4 he needs to request it to the community
and the IP address will be assigned to him. The public ninux IPv4 address will be assigned
considering where the node of the member is locate, to avoid asymmetric traffic with the BGP
gateways (more later).

IPv6
The Ninux Network in Rome uses the IPv6 address space 2001:4c00:893b::/48. Every Ninux
member allocates for the LAN at his place one or more /64 networks. It is important to delegate
an entire /64 to a Ninux Node because most IPv6 software implementations expect the LAN to
be a /64 subnet. By delegating a smaller IPv6 space you will run in problems when assigning
dynamically IPv6 addresses to your network hosts.
The OLSR protocol has a nice feature: because it was originally devised to support the mobility
of the nodes, the signalling works as long as there is a working layer 2 connection between
two routers. Because the OLSR packets have a multicast destination address, both the source
IP address and the subnet mask of the OLSR router are not important for the correct behavior
of the signalling. This means that we could have routers with a completely random 128bit
sequence instead of a coherent IP address and the OLSR protocol would be able to make
its routing properly. The radio interfaces of the backbone have IPv6 addresses inside this /64
network
2001:4c00:893b:1::/64
By default we use this convention:
2001:4c00:893b:1:<ZIPCODE>::X
Where <ZIPCODE> is the same value explained for IPv4 and X is the same 8 bit integer as the
last IPv4 octet. However because the IPv6 address space is bigger than IPv4 and many nodes
can be in the same ZIPCODE area, we do not mandate to strictly use ZIPCODE so we have
several exceptions to this rule. The mandatory is that radio backbone interfaces MUST be in the
2001:4c00:893b:1::/64 subnet.
In summary the only reserved /64 subnets are 2001:4c00:893b:1::/64 and 2001:4c00:893b:ffff::/
64, so any other free /64 network can be choosen by a Ninux member for his home LAN.

 5

Conventions in Addressing
There are some conventions that we use to easily managing numbering point to point links.

VPN address space:
The Ninux VPN as explained later is only IPv4. As a convention we chose 10.0.1.X for the
Rome VPN and 10.0.5.x for Ninux Islands VPN connection addressing. These services will be
described later in Section X

GRE Tunnels Point to Point Links:
For full mesh iBGP tunnel we use, for IPv4, 10.0.3.0/24 subnetted in /30, one for each tunnel.
IPv6 tunnel address are /127 (rfc6164) subnets taken from 2001:4c00:893b:ffff::/64

iBGP Peering VPN
The iBGP peering session can be built on top of a overlay VPN based on tinc-vpn instead
of GRE tunnels. In this case we still use for IPv4 the 10.0.3.0/24 network and for IPv6 the
2001:4c00:893b:ffff::/64 but there is no need for subnetting in point-to-point networks because
the VPN technology gives the abstraction of a single LAN.

 6

http://tools.ietf.org/html/rfc6164)

Network Topology
In the following figure we show a simplified topology of the Ninux Network.
For the complete topology of the network of Rome you can check out the web site http://
map.ninux.org .
We show three BGP routers, as in the Ninux Network of Rome, however this architecture works
with any number of BGP routers.

OLSR routers, as we will explain more in deep later, are the devices that the community
members have on the roof of their houses. On the same roof there might be more than one
OLSR router, but at least one must be present to run a Ninux Node. OLSR routers can be
connected to other routers via both wireless and wired links. Links are not mandatory to be point
to point. In the case of wired links we have an Ethernet segment, where all the routers that are
connected will establish an adjacency to all the others in the segment. In wireless links, even
if we prefer to have point to point links to reach better performances, we can have any kind
of L2 configuration (AP-STA or ad-hoc for wireless) and the routing protocol will take care of

 7

http://map.ninux.org
http://map.ninux.org

establishing the router’s adjacencies.
In the figure we depict a cloud of routers, it means that these devices route traffic just by being
OLSR speakers.
Two Ninux nodes are represented in higher detail. The one in the left is a roof with three routers
on the top, and no Internet connection available in that site. The one in the right is a roof with
two OLSR routers, where the Ninux member is also sharing her ADSL bandwidth.

Mesh stub areas
The usual OLSR router has an interface connected to the user LAN, in a subnet with some
hosts that do not run the OLSR protocol. To announce the IP addresses of the LAN in the OLSR
protocol we use the HNA configuration setting in OLSR.
Of course the HNA configuration setting can be exploited to announce a subnetwork that is
not a normal LAN, but it is a mesh network where we run a L2 routing protocol, for example
B.A.T.M.A.N.-Advanced.

As we see in the figure there will be an edge router between the two domains that speaks both
the OLSR and the B.A.T.M.A.N.-Advanced routing protocol. This edge router will announce all
the IP addresses used in the batman-adv network with an HNA setting.

 8

Note that is not mandatory to have a single router speaking both protocols. The setup will work
also with an additional device connected to the HNA segment of the OLSR router that speaks
the B.A.T.M.A.N.-Advanced routing protocol and makes the connection from the HNA domain
and the batman cloud.
On the other “side” the edge router will run a DHCP server instance and will use it to distribute
addresses to all the batman-adv nodes belonging to the L2 mesh network (the LAN). In this
way, the nodes will directly exploit the OLSR edge router as default gateway towards the rest
of the network without caring about any L3 routing issue. Here it is easy to understand that the
batman-adv mesh network is exactly behaving like a normal LAN connected to a classic OLSR
router.

Mesh transit areas
If the mesh network connects to the backbone in more points, then we don’t have a mesh stub
area anymore. Note that the mesh address space is announced to the Ninux Backbone via
HNA in both the edge routers. Moreover the two edge routers will establish a OLSR adjacency
that traverses some hops in the batman-adv mesh network. This happens because OLSR is
not aware of the batman-adv mesh topology and about the number of hops it has to traverse,
therefore the weight of this “single OLSR-link” should be manually adjusted by the Ninux
Members running this part of the network.

 9

For what concerns the batman-adv nodes, as for the stub area, they do not have any knowledge
about the L3 routing issue, therefore they will continue to use as default gateway the edge
router assigned by the DHCP protocol.
Depending on the Ninux members, all the edge routers could have their own DHCP server
up and running, therefore the batman-adv area would end up in having multiple servers
assigning DHCP addresses and default routes. To solve this issue, batman-adv implements a
convenience feature called “Gateway Selection”: with this mechanism each and every broadcast
DHCP request issued by any node in the area is directly redirected to the best gateways in the
area. If you enable this not standard feature of batman-adv you have to make sure that every
DHCP server is managing an IPv4 range, and these ranges must be not overlapping. The
best gateway is chosen using the same metric used by batman-adv for the routing process so
ensuring that each node will pick the most reliable one. In this way each node will contact only
one of the DHCP servers that are present in the area and will use the default route assigned by
it. In a general scenario each GW running a DHCP server will assign itself as default route for its
clients.

 10

Routers specification
This architecture assumes that all the routers in the Ninux network are Linux based (running
AirOS or OpenWRT systems) with a Kernel capable of managing multiple routing tables.
It is by using multiple routing tables that we are able to build up a complex IPv4 routing to meet
our requirements.
Note that the olsrd daemon is natively able to use multiple routing tables for its operations. In
particular olsrd will write all the hosts routes in a table and will write his best default route into a
different table. We’ll see later on how to exploit this feature.

BGP routers
The BGP routers in the proposed architecture are located only at the edge of the autonomous
system. The routers are connected to each other forming a full mesh made by IP overlay
tunnels and iBGP is handled with a full mesh of peering. The IP tunnels can be implemented
using GRE tunneling or UDP tunneling with any VPN software. The key is that the tunnels are
built over the ninux mesh network using OLSR routed addresses. This configuration guarantees
that if there is a working path between two BGP nodes, their tunnel is up.
Note that using GRE could lead to a configuration bottleneck, because when deploying a new
BGP router you need to configure a tunnel to each one of the already existing routers, allocating
a /30 and /127 network for each tunnel. The BGP routers will result in having a virtual GRE
interface of every configured tunnel. If you decide to use tinc-vpn as overlay technology each
router will have a single virtual interface that is attached to a virtual LAN were all the other iBGP
peers are present.
We do not expect the number of our BGP routers to grow too much, because we place them
only at the edge of the autonomous system. However this architecture can be extended with
more scalable iBGP schemes (for example a route reflector cluster) if the number of BGP
routers gets too big.
The BGP router must be Linux based, because we need to run the olsrd daemon on the router
to redistribute our IGP routes to BGP.
In our implementation we use Quagga version 0.99.21 with the “manet” patch and the olsrd
daemon version 0.6.5.2 (or later) with the quagga plugin.
Because the Ninux backbone is designed with redundant paths, it should never happen that the
Autonomous System becomes partitioned. If this happens unpredictable routing decisions may
be taken for what concerns the traffic to the Internet.

Export Policy
The BGP router is however connected to the Ninux backbone with a single link, so there is the
necessity to handle the case where the BGP router is disconnected.

 11

As we see in the figure, we want to handle the scenario in which the BGP router loses its
connectivity to its OLSR 2-hop neighbor because the wireless link is down. In this case we need
the BGP router to stop announcing upstream the public IPv4 and IPv6 routes of Ninux.
To do this we configure two static routes, one for IPv4 and one for IPv6, to route all the public
Ninux addresses to a next-hop that is the address of the 2-hop neighbor.
This static route is active and then redistributed in BGP only if there is a OLSR route to correctly
resolve the next-hop, that we configured as the OLSR 2-hop neighbor.
With this trick we achieve to have in quagga something similar to the route tracking feature of
the cisco routers.
Note that if a BGP router has multiple 2-hop neighbor this setup will still work adding multiple
next-hops for the static routes that we are defining.

Import Policy
The minimal requirement is to receive from the upstream a default route via BGP. However
because we like to experiment we receive from the upstream a full routing table.

 12

Regarding the redistribution of the default route to the OLSR network, the BGP routers
announce in the OLSRd process (via HNA announces) two special prefixes that are:
0.0.0.0/1 and 128.0.0.0/1. The sum of these two prefixes is all the IPv4 Internet, so why aren’t
we just announcing the default route? We announce these two more specific routes together
with the default one because we want this information to go into a particular routing table in all
the other OLSR routers (more later).
It is important also to distribute in OLSR the classical default route, in addition to the two /1
aggregates, because we will see later that this piece of information will be stored in a specific
table of the OLSR routers that we use only for the default.
The BGP routers use a hot potato (or early exit) policy. Once traffic is there we send it on the
upstream. It makes no sense to send the traffic to another BGP router within the GRE tunnel,
maybe 15 wireless hops away, just because of a better AS path.
However, if for some special destination we have a policy to exit the Ninux network from a
specific upstream provider, remember that traffic routed with a route learnt via BGP must always
be routed into a GRE tunnel or to a upstream provider. This is mandatory because the next-hop
must be a BGP speaker to have a consistent routing.

OLSR routers
This type of router is the most common in the Ninux Network. It runs the OLSR routing protocol
and it makes use of Policy Based Routing (PBR) with the following routing tables.

IPv6Table: IPv6 routing table, learnt via OLSR
RtTable: olsrd IPv4 routing table
RtTableDefault: IPv4 default route learnt via OLSR
RtTableLowPrefix: IPv4 low prefix like 0.0.0.0/1 and 128.0.0.0/1 used for special operations
BlackholeTable: IPv4 routing table with the blackhole rules
LocalTable: IPv4 networks directly connected to the router
Main: IPv4 main Linux routing table. Routes applied via web interface go here
Please refer to this document for better comprehension of naming the tables:
http://olsr.org/git/?p=olsrd.git;a=blob;f=files/olsrd.conf.default.full

Routing operation inside the OLSR router
The OLSR router is the key element of our routing architecture. The rules to choose which
will be the routing table where to process the traversing IP packet, form the core part of all the
network routing process.

If packet is IPv6: use IPv6Table

If packet is IPv4:
1) First match LocalTable
2) If destination is private: use RtTable

 13

3) If destination is Ninux Public IPv4: use RtTable
4) Use blackhole table
5) If source is Ninux Public IPv4: use RtTableLowPrefix
6) If source is Transit Public IPv4: use RtTableLowPrefix
7) Anything else use Main and then RtTableDefault

TODO: textual description of the algorithm. Ripetere che annunciamo le /1

Avoid ghost traffic to gateways
What will happen if a host starts to generate packets to a destination that doesn’t exist, that is in
private address space, or in the Ninux public address space? This packets will follow the default
route and will die into an Internet Gateway.
To avoid this useless traffic we insert some special static routes in the Blackhole Table. This
routes will match the aggregate of the private IPv4 space (RFC 1918) and will match the
aggregate of all the public IPv4 Ninux space. As a matter of fact if the host or subnet do exist,
there is always a more specific route that is matched in the RtTable, this special routes that are
inserted before the default route in the main table have the effect of stopping traffic towards
not existent destinations that was traveling in the direction of the default gateways. Practically
speaking we are talking about adding these routes:

ip route add blackhole 10.0.0.0/8 table 114
ip route add blackhole 172.16.0.0/12 table 114
ip route add blackhole 192.168.0.0/16 table 114
ip route add blackhole 176.62.53.0/24 table 114

Please note that we are blackholing aggregates! In the LocalTable you will always have a
subnet before the blackhole route of the aggregate because the local subnet have a longer
prefix. For example if your home subnet is 10.40.0.0/24 you will have this directly connected
route always before the blackhole route to 10.0.0.0/8 because the /24 has a longer prefix.
You should not blackhole a route of a network that you are using completely. If you get a new
subnet, for example 176.62.54.0/24, and you use this network in a single site, then on this
router you should not blackhole with route in the main table, because you cannot think of this
network as an aggregate anymore.

Avoid ADSL Blackholes
If the OLSR router sends traffic to a default gateway defined in RtTableManual, but the ADSL
connection is a blackhole, the traffic gets lost.
To prevent this situation the router announces the default via OLSR only if the connection
through the ADSL modem is working.
To be able to detect this situation we define a detection_address address and a routing table
detection_table so that:

● detection_table has always higher priority than the other tables
● detection_address is a public IPv4 address

 14

● detection_address belongs to a host that has high availability
● detection_address belongs to a host that is ICMP enabled
● detection_table contains an entry for detection_address so that it is always routed

through the ADSL line
Then we use olsrd dynamic Internet Gateway plugin and our bash script (adsl_check):

● the olsrd dynamic Internet Gateway plugin is configured to announce the default route
only if detection_address is available

● adsl_check inserts the static route with gateway the ADSL modem as default route in
RtTableDefault if detection_address is available and deletes the same static route if
detection_address is not available

Note that more than one detection_address can be configured, as long as the above
characteristics apply.

As an alternative, the OLSR protocol injection plug-in can be used. TBD

ADSL routers

This is the home Internet Gateway of a Ninux member, if any.
There are a few requirements that ADSL routers in our specification should match:

1. Possibility to specify the IP address
2. Possibility to add static routes to a gateway connected on the LAN interface

Note that the router that is provided by some Internet Service Provider might not be of use, i.e.
the routers by Alice Telecom Italia have a fixed IP address 192.168.1.1 that cannot be changed.
Also the Fastweb ISP architecture may not be compliant with the Ninux ADSL router
requirements: addresses in the private IP address range have been provided to customers (and
the range itself is not configurable by the users).
In both these cases an intermediate device, the “home router”, which must have an “ISP” and
“Ninux” interfaces, implements a “double NAT” system were both ISP and Ninux address space
are masqueraded.
Alternatively, we can configure an alias interface on the ethernet (say, 192.168.1.254 on
the eth0:1) of the roof OLSR router and use the directly connected IP to route to the fixed
unchangeable default gateway.
The traffic on the “home router” can be also monitored using compliant protocols such as SNMP
and can be used as VPN host, in conjunction with an olsrd instance (see below).

 15

http://wiki.ninux.org/adsl_check

Another further approach is to use the smart gateway feature of OLSR, that is capable of
“sensing” an ip address on internet in order to inject the default route on HNA4 and that permit
to choose “smartly” the default gateway to use for internet traffic, based on bandwidth/nat/
preference requirements. This is therefore a very cool approach, being able to tolerate for a
few more hops the hotness of the potato. We are still experimenting. Issues are mainly the
necessity to tunnel the traffic via IPIP, the MTU clamping hysteria, the stability of the route
announcements, the tcp session disruptions in case of gateway change... and so on.

Anycast GRE tunnels
The legacy OLSR routers of the Ninux network do not have Policy Based Routing configured.
This means that before all routers are upgraded we cannot rely on the network for proper
routing of the Ninux public addresses. The problem comes when a packet with source address
a public IP address of Ninux, and as destination address a general Internet ip destination, is
captured by a ADSL gateway because matching a default route.
Moreover starting to announce the /1 prefixes via HNA has a magnetic effect of traffic to the
BGP routers, if many routers are not yet upgraded.
As a transition mechanism we introduce anycast GRE tunnels to transport public IP addresses.
The anycast

 16

Server side
In the olsr.conf file make sure you are announcing the anycast address

Hna 10.0.162.1 255.255.255.0

Server site bash script:

#!/bin/bash
greifname=$1
ip addr add 10.0.162.1/32 dev lo
ip tunnel add $greifname mode gre local 10.0.162.1 ttl 255
ip link set $greifname up

tunnel script: example: ./bgpsidescript.sh ninuxpub

Client side
olsr.conf (on nearest olsr node):

 17

... Hna <assigned pub ip> 255.255.255.255 ...

client script:

#!/bin/bash

greifname=$1
local_ip=$2
pub_ip=$3
remote_ip=10.0.162.1
ip tunnel add $greifname mode gre remote $remote_ip local $local_ip
ttl 255
ip link set $greifname up
ip addr add $pub_ip dev $greifname
ip rule add from $pub_ip table 115
ip route add default dev $greifname table 115

usage example: tunnel_gre.sh ninuxpub <priv_ipv4> <assigned pub ip>/32

NAT - Network Address Translation
Apart from the situation in which a “double nat” device is needed to separate the Ninux network
from the provider’s private IP address space, there is only one situation in which we have to use
NAT in the Ninux network: when a IPv4 packet with a private source address is going outside
the Ninux Network. This can happen both at the ADSL router or at the BGP router. A NAT must
be properly configured to handle this situation.

 18

VPN: OOB, Monitoring and Connection to other cities
In the IPv6 Internet all the Ninux cities can exchange traffic using the general Internet routing.
But for legacy IPv4 services using private IPv4 addresses we deployed a VPN to have a
consistent routing among all the Ninux cities.

There are two different VPN scenarios in place.
RomeVPN. It is a tinc VPN between the nodes of Ninux Roma. We speak OLSR on this VPN
and makes possible to have virtual backup links in case the AS is partitioned.
The VPN Links are part of the OLSR domain, the weight of the links is altered with the
LinkQualMult setting of olsrd.conf to use VPN Links only if no other route to the destination is
available.

Islands Ninux VPN: it is a tinc VPN dedicated to the traffic to the other Ninux cities.
On this VPN we use the babel routing protocol and OLSR with the protocol injection plugin.

In the Rome network we deploy this VPN as a tool for troubleshooting and monitoring. The
troubleshooting part is in place in case several wireless backbone links begin to fail: the AS will
not be partitioned if there are VPN links that keep all the nodes connected in the routing.
We do monitoring (traffic statistics and Nagios) with a single server for all the cities in Italy. This
server accesses the various cities exploiting the VPN links.
In this architecture the Rome VPN is meant for signalling (SNMP, Nagios checks) and
troubleshooting and never for carrying actual data traffic.
At the moment we make use of tinc-vpn to create the overlay topology among the border routers

 19

Migration from legacy Ninux to this routing
architecture
What happens when we deploy this architecture? Do we have to reflash all the routers at once
with the new firmware?
The answer is no. The new OLSR routers are backward compatible with the legacy OLSR
routers that use a single routing table. When the network is mixed, the only traffic that can have
problems are IP packets with a Public Ninux source address. If these packets are routed by
mistake to ADSL lines by a legacy OLSR router, the results are unpredictable, depending on the
ADSL provider’s configuration.

 20

Conclusion

This is the very first version of this document where we describe the Ninux Routing Architecture.
The deployment of this architecture should be complete by the end of 2013. We are going to
release future versions of this document during the roll out of the network, adding templates for
configuration files and fixing mistakes we find on the way. If you want to get in contact with us
you can send an e-mail to contatti@ninux.org.

Appendix: OLSR router configuration template
To implement Policy Routing this is a template script:

#110 Local routes
#111 RtTable
#112 RtTableDefault
#113 Special Table for /1
#114 blackholes table

#Copy local routes only from table main 254 to table 110
ip route show table 254 | grep -Ev ^default | grep -Ev ^blackhole |
while read ROUTE ; do
ip route add table 110 $ROUTE
done

#First evaluate local routes
ip rule add from all lookup 110 pref 3

#Private routes to OLSR table
ip rule add to 10.0.0.0/8 table 111 pref 4
ip rule add to 172.16.0.0/12 table 111 pref 4
ip rule add to 192.168.0.0/16 table 111 pref 4

#Ninux IP Addresses to OLSR table
ip rule add to 176.62.53.0/24 table 111 pref 4

#Evaluate blackholes
ip rule add from all table 114 pref 5

#Send traffic of public addresses to BGP border routers
ip rule add from 176.62.53.0/24 table 113 pref 6

 21

#Lookup default route first from user and then from OLSR
ip rule add from all lookup 254 pref 7
ip rule add from all lookup 112 pref 8

#Blackhole private aggregates
ip route add blackhole 10.0.0.0/8 table 114
ip route add blackhole 172.16.0.0/12 table 114
ip route add blackhole 192.168.0.0/16 table 114

#Blackhole Ninux aggregate
ip route add blackhole 176.62.53.0/24 table 114

The template of olsrd.conf for IPv4 is the following:

DebugLevel 0
IpVersion 4
Pollrate 0.025
FIBMetric "flat"
RtTable 111
RtTableDefault 112
UseNiit no
SmartGateway no
#Hna4
#{
#10.xxx.0.0 255.255.255.0
#}
UseHysteresis no
TcRedundancy 2
MprCoverage 7
LinkQualityLevel 2
LinkQualityAlgorithm "etx_ff"
LinkQualityAging 0.05
LinkQualityFishEye 1

LoadPlugin "olsrd_txtinfo.so.0.1"
{
 PlParam "port" "2006"
 PlParam "Accept" "0.0.0.0"
}

LoadPlugin "olsrd_mdns.so.1.0.1"
{
 PlParam "NonOlsrIf" "eth0"

 22

 PlParam "MDNS_TTL" "20"
 PlParam "TTL_Check" "true"
 PlParam "Network_ID" "1"
 #PlParam "FilteredHost" "192.168.0.1"
}

InterfaceDefaults {
 HelloInterval 3.0
 HelloValidityTime 125.0
 TcInterval 2.0
 TcValidityTime 500.0
 MidInterval 25.0
 MidValidityTime 500.0
 HnaInterval 10.0
 HnaValidityTime 125.0
}

Interface "ath0" "eth0"
{
 Mode "mesh"

 # LinkQualityMult 192.168.0.1 0.5
 # LinkQualityMult default 0.8
}

The template of IPv6 is the following:

DebugLevel 0
IpVersion 6
Pollrate 0.025
FIBMetric "flat"
UseNiit no
SmartGateway no
#Hna6
#{
#2001:face:b00c:b00d:: 64
:: 0
#}

UseHysteresis no
TcRedundancy 2
MprCoverage 7

 23

LinkQualityLevel 2
LinkQualityAlgorithm "etx_ff"
LinkQualityAging 0.05
LinkQualityFishEye 1

LoadPlugin "olsrd_txtinfo.so.0.1"
{
 PlParam "port" "2007"
 PlParam "Accept" "::"
}

LoadPlugin "olsrd_mdns.so.1.0.1"
{
 PlParam "NonOlsrIf" "eth0"
 PlParam "MDNS_TTL" "20"
 PlParam "TTL_Check" "true"
 PlParam "Network_ID" "1"
 #PlParam "FilteredHost" "2001::1"
}

InterfaceDefaults {
 HelloInterval 3.0
 HelloValidityTime 125.0
 TcInterval 2.0
 TcValidityTime 500.0
 MidInterval 25.0
 MidValidityTime 500.0
 HnaInterval 10.0
 HnaValidityTime 125.0
}

Interface "ath0" "eth0"
{
 Mode "mesh"

 IPv6Multicast FF02::6D

}

Appendix: OLSR Troubleshooting

 24

We expect txtinfo plugin to be accessible by anyone on our routers, on port 2006 for IPv4 and
on port 2007 for IPv6.
Using this tool we can access the OLSR routing table, links information etc etc, so that any
Ninux Member can perform troubleshooting on the backbone without need of passwords.
https://github.com/ninuxorg/misc_tools/blob/master/ninux-lg.py

Appendix: BGP router configuration template
First of all you have to tune the Linux Kernel parameters to store enough routes for a full routing
table of the Internet.

echo 32768 >/proc/sys/net/ipv6/route/max_size
echo 8192 >/proc/sys/net/ipv6/route/gc_thresh

sysctl -w net.core.wmem_default=1048576
sysctl -w net.core.wmem_max=1048576

Download quagga sources and apply this patch:
https://dev.openwrt.org/browser/packages/net/quagga/patches/120-quagga_manet.patch

Or use our git repository:
https://github.com/ninuxorg/quagga-manet.git

On the BGP router also OLSR is running, make sure you enable the quagga plugin with the
following configuration

LoadPlugin "olsrd_quagga.so.0.2.2"
{
 PlParam "ExportRoutes" "only"
 PlParam "SockPath" "/var/run/zserv.api"
 PlParam "Version" "2"
}

This is a template for the zebra.conf file. Values to be changed are in bold.

hostname Router
password yourpassword
enable password yourenablepassword
log file /var/log/quagga/zebra.log
interface eth0
 ipv6 nd suppress-ra

 25

https://github.com/ninuxorg/misc_tools/blob/master/ninux-lg.py
https://dev.openwrt.org/browser/packages/net/quagga/patches/120-quagga_manet.patch
https://github.com/zioproto/quagga-manet.git

interface lo
ip forwarding
ipv6 forwarding

This is a template for the bgpd.conf file. Values to be changed are in bold.

hostname bgpd
password yourpassword
enable password yourpassword
log stdout
log syslog

router bgp 197835
 bgp router-id youripaddress
 network 176.62.53.0/24
 network 176.62.53.0/25
 network 176.62.53.0/27
 network 176.62.53.128/25
 aggregate-address 176.62.53.0/24
 aggregate-address 176.62.53.0/25
 aggregate-address 176.62.53.0/27
 aggregate-address 176.62.53.128/25
 neighbor ibgp_neighbor_ipv4_address remote-as 197835

 26

 neighbor ibgp_neighbor_ipv4_address description bgpmara
 neighbor ibgp_neighbor_ipv4_address next-hop-self
 neighbor ibgp_neighbor_ipv4_address route-map IBGP in
 neighbor ebgp_neighbor_ipv4_address remote-as 35131
 neighbor ebgp_neighbor_ipv4_address description ydea
 neighbor ebgp_neighbor_ipv4_address shutdown
 neighbor ebgp_neighbor_ipv4_address ebgp-multihop 10
 neighbor ebgp_neighbor_ipv4_address soft-reconfiguration inbound
 neighbor ebgp_neighbor_ipv4_address route-map LP150 in
 neighbor ebgp_neighbor_ipv4_address IPv4-53-128-PREPEND-OUT out
 neighbor 2001:4c00:893b:ffff::2 remote-as 197835
 neighbor 2001:4c00:893b:ffff::2 route-map LP50 in
 neighbor 2a02:688:1::5 remote-as 5394
 neighbor 2a02:688:1::5 description UNIDATA TECNOPOLO
address-family ipv6
 aggregate-address 2001:4c00:893b::/48
 redistribute static
 redistribute olsr
neighbor 2001:4c00:893b:ffff::2 activate
 neighbor 2001:4c00:893b:ffff::2 route-map LP50 in
neighbor 2a02:688:1::5 activate
 neighbor 2a02:688:1::5 route-map LP150 in
 neighbor 2a02:688:1::5 route-map IPv6-UNI-OUT out
 exit-address-family

ip prefix-list ALL-IPv4 seq 5 permit 176.62.53.0/24
ip prefix-list ALL-IPv4 seq 10 permit 176.62.53.0/25
ip prefix-list ALL-IPv4 seq 20 permit 176.62.53.128/25
ip prefix-list ALL-IPv4 seq 30 permit 80.79.62.80/29
ip prefix-list ALL-IPv4 seq 40 permit 80.79.62.186/32
ip prefix-list IPv4-53-0 seq 10 permit 176.62.53.0/25
ip prefix-list IPv4-53-128 seq 10 permit 176.62.53.128/25
ip prefix-list IPv4-YDEA-OUT seq 10 permit 80.79.62.80/29
ip prefix-list IPv4-YDEA-OUT seq 20 permit 176.62.53.0/24
ip prefix-list IPv4-YDEA-OUT seq 30 permit 80.79.62.185/32
!
ip as-path access-list SOLONINUX permit ^$
ip as-path access-list SOLONINUX deny any
!
ip community-list 100 permit 1:100
!
route-map LP50 permit 10
 set local-preference 50
!

 27

route-map SOLONINUX permit 10
 match as-path SOLONINUX
!
route-map IPv4-53-128-PREPEND-OUT permit 10
 match ip address prefix-list IPv4-53-128
 match as-path SOLONINUX
 set as-path prepend 197835
!
route-map IPv4-53-128-PREPEND-OUT permit 20
 match ip address prefix-list ALL-IPv4
 match as-path SOLONINUX
!
route-map LP150 permit 10
 set local-preference 150
!
route-map IBGP permit 10
 match community 100
 set local-preference 200
!
route-map IBGP permit 20
 set local-preference 50
!
route-map LP30 permit 10
 set local-preference 30

ipv6 prefix-list IPv6-UNIDATA-OUT seq 10 permit 2001:4c00:893b::/48

ip as-path access-list IBGP-NINUX deny 197835
ip as-path access-list NINUX-UNIDATA-TECNOPOLO permit ^$
!
route-map NINUX-TECNOPOLO permit 10
 match as-path NINUX-UNIDATA-TECNOPOLO
!
route-map IPv6-UNI-OUT permit 10
 match ipv6 address prefix-list IPv6-UNIDATA-OUT
!
route-map LP50 permit 10
 match as-path IBGP-NINUX
 set local-preference 50
!
route-map LP150 permit 10
 set local-preference 150

 28

